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Following the method developed by Papapetrou and Hamoui, a solution 
of the Einstein equations corresponding to a thin shell of dust under rigid 
rotation solution is obtained. The region interior to the shell is flat and 
the exterior vacuum region is chosen as a Lewis manifold. An essential 
limitation of this type of shell is that it does not allow the limit M1 and 
L1 --- O, where 3//i and Lz are the mass and the angular momentum per 
unit length. It is shown that the limitation is a consequence of the fact 
that the Lewis metric does not contain the Minkowski metric as a special 
case. 

1. I N T R O D U C T I O N  

The known  vacuum solut ions o f  Einstein 's  field equat ions  admi t  
numerous  possible  structures o f  the source. Argumen t s  tha t  a possible  source 
o f  the Ker r  solut ion may  be a ro ta t ing  thin shell were put  forward  by N e w m a n  
and  Janis  (1965), Cohen  (1967), and  de la Cruz  and Israel  (1968). In  the 
present  work,  the analysis  o f  a s ta t ionary  axisymmetr ic  thin shell is given. 
The me thod  o f  Papape t rou  and H a m o u i  (1968) is used to const ruct  the thin 
shell sources for  the s ta t ionary  axisymmetr ic  fields. By restr ic t ing our  
a t tent ions  to space-t ime admi t t ing  group o f  mot ions  a long the axis o f  sym- 
met ry  in add i t ion  to t ime and az imutha l  angle,  a considerable  s implici ty is 
achieved in an otherwise very compl ica ted  problem.  

In  Section 2, we shall present  a br ie f  review o f  the P a p a p e t r o u - H a m o u i  
me thod  for  const ruct ing  thin shells in general  relativity.  In  Section 3, we 
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have used this technique to obtain the thin shell source for the stationary 
axisymmetric solution first given by Lewis (1932). In Section 4, we obtain 
the expressions for the mass and the angular moment per unit length in the 
case of a rotating dust. In Section 5, we make a discussion of  the results 
obtained. Finally, in Section 6, we add some remarks about those results. 

2. THE PAPAPETROU-HAMOUI METHOD 

Let the 3-cylinder Z, defined by the equation 

~(x0 = 0 (2.1) 

be the history of a thin shell, g2~ and gu + are the metric tensors in the half- 
spaces ~ < 0 and ~ > 0, respectively. The coordinate system is chosen such 
that the metric tensor is continuous through Z, 

+ [g.d ~ (g.0~-.+o - (gL)r = 0 (2.2) 

If P~ is the normal vector to the hypersurface Y,, 

eg 
P~ = ex , (2.3) 

then the discontinuities of the first derivatives of  g.~ are given by 

[g.v,~,] = Bu~Po (2.4) 

where B,,~(x") is a symmetric tensor. The energy-momentum tensor is given 
by 

r.~ = ~ .~(0  + : v  (2.5) 

where 2V,~ is an ordinary function of x ~ representing a volume distribution 
of matter. In this paper, we are considering the case in which iV,~ vanishes. 

The field equations are then given by 

R,~ - �89 = - K,,~3(~) (2.6) 

where 

-2~-c .~  = B ,  vP~P ~ + BP ,P~  - (B,~P~ + B~P~.)P ~ - gu~(BP~P ~ - B )  

(2.7) 

with 

B = garB a~, B = Ba~PaP ~ (2.8) 

It is evident from (2.7) that ~ is normal to pv: 

~,,P~ = 0 (2.9) 



Thin Cylindrical Shell of Dust 977 

3. STATIONARY CYLINDRICAL SHELL 

We consider a thin cylindrical shell of dust under rigid rotation, defined 
by 

~ = r - a = 0  (3.1) 

The region interior (C < 0) to the shell is flat, and the metric there can be 
taken as 

ds_ 2 = e2%(dr 2 + dz 2) + Lor 2 de  2 - ~ dt 2 (3.2) 

where ~Fo and L0 ~ 0 are dimensionless constants. Since, for the case 
e 2~'o # Lo, the Riemann tensor is singular at r = 0, we shall choose e2% = Lo, 
to avoid singularity at the axis of symmetry, as we are interested in the field 
produced by the surface distribution of  matter on the shell alone. (The 
singularity represents some additional distribution of matter on the axis.) 
Then, equation (3.2) takes the simple form 

1 
ds_ 2 = Lo(dr 2 + dz 2 + r 2 de 2) - ~ dt 2 (3.3) 

containing only one arbitrary constant, Lo > 0. 
The exterior vacuum region C > 0 will be chosen as a Lewis manifold 

(Lewis, 1932) with the metric 

ds+ 2 = e2~td r2 + dz 2) + g~3 dr 2 + 2g~4 dr dt  + g~4 dt 2 (3.4) 
where 

g S =  

g~ ---- 

g~ - 

g+2 = e 2~ ---- kp (4n2-I)12 

ro (p2~+i _ p-2~+i) 

-~r~ [(~ + /9)p~+~ + (~ _ /9)p_~§ 

(3.5) 

g~~ ------ ~ar~ [(a + /9)2p2.+i -- (a -- /9)2p-2.+i] 

Here, k and n are dimensionless constants, ro a constant of  dimension of  
length, a and/9 are constants of dimension of  the inverse of length, and 

p =- r/ro (3.6) 

This form of  the exterior metric was first considered by van Stockum (1937). 
Starting with the interior metric (3.3), the continuity conditions (2.2) 

at r = a yield the following relations: 

Lo = k A  (4nL1)I~ 

A 2" = ( a ,  ~)aLo (3.7) 
A -  2, = _ (c, + ~)aLo 
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where 
A - a/ro ~ 1 

From(3.7), it follows immediately that 

( 8  2 - ~ ) a 2 L o  ~ - -  1 

Using the conditions (2.4),wRh 

P o  = ( 1 , o , o , o )  

we find easily that 

( 3 . 8 )  

(3.9) 

(3.1o) 

B l l  = B2,~ = �89 2 - 1 ) L o  

B33 = ~ + 2nfl aLo 
(3.11) 

2n 
B 8 4  ~ _ _  

~aLo 

+ 2nil 1 
B44 = 

aLo 

With these, we calculate (2.8) immediately, 

= - - 4 n 2  a-  1 , B = �89 2 - 1) a lo  (3.12) B 

and then, from (2.5) and (2.7), we find that the only surviving components 
of %v are 

a 
"aa = ~ [(1 + 4n2)~ + 4nil] 

n 
~'a~ = "  K~aLo2 (3.13) 

1 
"r44 = 4~:aaLo2 [(3 - 4n2)~ + 4n/3] 

4. THIN SHELL OF ROTATING DUST 

The matter tensor of a rotating dust is, in the general case, 

T,~ = pu,  u~ (4.1) 

For a shell of  dust rotating about the axis of symmetry, we have only the 
following nonvanishing components: 

7"88 = pu3 ~, T34 = pu3u4, T~4 = pu42 (4.2) 
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Therefore, this case is characterized by the condition 

T3aT4, - /'324 = 0 (4.3) 

In the case of the thin shell, and using (2.5), (4.3) takes the form 

_ , 3  = 0 ( 4 . 4 )  T38T44 34 

Substituting the values of r,v from (2.7), one obtains 

(Ba8 - g~3BI1P1)(B,, -- g~BI~P ~) - B~4 = 0 (4.5) 

Introducing (3.11) into (4.5), we obtain the final condition: 

4n/3=c~ (4n2 2 ~ 1 )  2 - (4n2 + 1) (4.6) 

For a given value of the radius a of the shell, we have in the two metrics 
ds_ 2 and ds+ 2 six constants: k, ro, n, c~,/3, and L0. The total number of con- 
ditions that have to be satisfied is four: the three conditions (3.7) and one 
condition (4.6). So, we will have at our disposal two arbitrary constants. 
This is quite reasonable, because the shall can have arbitrary mass and 
angular momentum per unit length in the direction of the z axis. 

To obtain the expression for the mass per unit length, we can use the 
general form for time-independent systems, 

M = f (T l l  + T22 + T38 - T 4 4 ) ( - g )  112 dax (4.7) 

Since, by (2.5) and (2.6), 

r " v  = __1 (R",  - �89 
/r 

(4.8) 

we find that (4.7) reduces to 

M=2 f R'~(-g)~,2d~x=4~ f -~ ~ R ' , ( - g )  1/2 dr dz (4.9) 

Now, using the van Stockum field equations (van Stockum, 1937), 

1 d g34g34., - g38g44.~ (4.10) 
( -g ) l /2R ' "  = 2 dr ( g~  - g3zg,,) ~/2 

and the Gauss theorem, one obtains immediately from (4.9) 

dM 2zr ~ + 2nil (4.11) M 1 - - - ~ =  ,~ 

The angular momentum per unit length can be computed from the 
general expression valid for the case of axial symmetry, 

f T4,(-g)112~ ~ dSx const - L (4.12) 
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where 
~ = (0, 0, 1, 0) (4.13) 

is the Killing vector describing the symmetry, and L is the angular momentum 
around the axis of symmetry. Now, for this case, we have 

1 (_g)~12R~ 3 = 1 d ga4gaa,~ - g3ag3~., (4.14) 
(-g)lJ2T~a = - ~  2~c dr (ga24 - gaag~,) ~/2 

Substituting (4.14) in (4.12) and using Gauss' theorem, one finds that 

dL  21r n 
- -  = ( 4 . 1 5 )  

L l = -  dz x 

From (4.11) and (4.15), it is evident that the total mass and angular 
momentum are infinite. 

5. DISCUSSION 

The constants Lo and k entering into (3.3) and the first of (3.5) have to 
be positive, in order to give the correct signature of the metric. From (3.7), 
we get 

> /3, /3 < 0 (5.1) 

Introducing (4.6) into (4.11), we obtain the following relation for MI: 

_K M1 = �88 2 - 1)(4n 2 - 5) (5.2) 
71" 

showing that M1 depends on n only. Therefore, if the quantities M1, L1, 
and a of the shell are given, we have to proceed as follows. We determine 
firstly n from (5.2), then ~ from (4.15) and/3 from (4.6). Finally, we determine 
L0 from (3.9) and ro and k from (3.7). 

Equation (3.9) can be used for determining Lo only if 

/35 > ~ (5.3) 

Starting from (4.6), we derive the following relation: 

16n2032 _ ~2) = _~(4n ~ _ 1)a(4n 2 _ 9)e2 (5.4) 

The condition (5.3) is equivalent to 

4n ~ < 1 or 4n 2 > 9 (5.5) 

The physical demand M~ >/ 0 is then already satisfied. 
We also have to demand that the velocity vector u" be timelike or null, 

g ~ u " u  v <. 0 

Because of (4.1), this is equivalent to 

Tu~, = gUVTuv <~ 0 (5.6) 
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since we must have p > O. The values of gaa and g44 on the shell are found 
from (3.3): 

g a a =  1/Loa 2, g 4 4 = - L o  

Using (3.13), we find at once 

4n 2 -  1 
Tu. = 2KaLo (5.7) 

Therefore, the demand (5.6) leads to 

4n 2 - 1 < 0 

Combining this result with (5.5), we see that the allowed values of  n are 
only those satisfying the first condition (5.5), 

4n z < 1 (5.8) 

Using (5.8), we see at once, from (4.6), that 

n ~ - < 0  
5 

According to (5.1), we have/3 < 0, and consequently 

n > 0 (5.9) 

i.e., n and ~ have the same sign. Since the formula (5.2) does not determine 
the sign of n, we have the two possibilities 

n = Inl ,  5 = 151 o r  n = - [ n l ,  ~ = - I ~ 1  

both giving the same positive Lz. Now, one can verify directly on (3.5) that 
changing the sign of  both n and 5 does no t  change the metric. Consequently, 
it will be sufficient to consider the one choice of signs only, e.g., 

n = [nl ,  5 = 151 ( 5 . 1 0 )  

Using (5.10), or even (5.9), one derives from the last two relations (3.7) 
the following result: 

a > ro (5.I1) 

We can determine also the angular velocity f2 of the motion of the dust 
particles, 

a__dr 
dt 

The relation 

u 3 d4 d4 dt 
= ~ = -3? ~ = nu* ( 5 . 1 2 )  
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combined with (4.1), gives 

Using the values (3.13) of ~',v and the relation (4.6), we obtain 

cr 2 16n t3 2 - a 2 
f 2 = ~ ( 4 n  - 1) 2 = a (4n2_  1 ) (4n2_9)  (5.13) 

these two expressions being identical because of (5.4). From the second 
expression, we obtain, using (3.9), (4.15), (5.2), and (5.4), 

L1 ~r___2n = 1 4n 2 - 9 
= ,r a 2 M1L~  4n ~ 5 (5.14) 

This is the generalization for the present case of the classical relation 
expressing L1 in terms of M1, a, and ~2. 

With the help of f2, we can write directly the condition 

guvu~u v <<. 0 

We find 
g , ~ u , u  ~ = (f~2938 + g~4)(u4) 2 

and consequently we get 
~2~ga3 + g4~ ~ 0 

Using (3.3), (5.4), and (5.9), a simple calculation leads to 

8 
f2ag3a + g ~  = L o ( 4 n  2 - 9) 

and so we arrive at the condition 

4n 2 < 9 

This is different from the condition (5.8) obtained previously. However, the 
difference is only apparent, since according to the condition (5.5) we have 
to exclude the values of n in the interval 

1 < 4 n 2 < 9  

6. CONCLUDING REMARKS 

The relation (5.9) shows that the shell that has been studied in this 
paper has L1 > 0. It is easy to see that, in order to obtain also shells with 
L1 < 0, we have to generalize the Lewis metric by writing the third equation 
(3.5) in the form 

ro /~)p~.+l (~ /3)p-~-§ g~4 = -Y- ~-~ [(a + + - 
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The upper sign in the right-hand side of  this relation is leading to L1 > 0, 
while the lower sign will give L1 < 0. 

An essential limitation of  the type of  shell discussed in this paper is 
that it does not allow the limit M~ and L1 -+ 0. Evidently, a solution having 
M1 = 0 = L1 does exist: I t  is sufficient to assume the Minkowski metric 
in the two regions r < a and r > a. I t  can be proved that the Lewis metric 
(3.5) does not contain the Minkowski metric as a special case, and this 
explains why the limit M1, L~ --~ 0 is not allowed for the shell discussed in 
this paper. 

Another aspect of  the limitations of  the metric (3.5) is that it does not 
allow the discussion of static shells. The reason is very simple. A static shell 
will be the source of a static gravitational field having g34 = 0. However, it 
is easy to show that the metric (3.5) cannot be reduced to a form having 

g34 = O, gsag44 ~ 0 

by a choice of  the constants ~, fl, n, and r0. 
Finally, we notice that according to (5.2) the shell discussed in this 

paper has an upper limit of  the mass M~, 

0 < M l f ~ < 5  
zr 

independently of  the value of the radius a. This situation must be due again 
to the limitations of  the Lewis metric: There are special solutions of  the 
vacuum Einstein equations, containing a smaller number of  arbitrary con- 
stants than the Lewis solution, which, however, do not constitute special 
cases of  the Lewis solution. It  will be interesting to discuss the problem of 
the cylindrical shell by using as a metric in the region ~ > a some of these 
special solutions of  the vacuum field equations. 
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